题目内容
已知f(x)=x3-x+c定义在区间[0,1]上,x1、x2∈[0,1]且x1≠x2.(1)证明f(0)=f(1);
(2)证明|f(x2)-f(x1)|<2|x2-x1|;
(3)证明|f(x2)-f(x1)|<1.
证明:(1)∵f(x)=x3-x+c,∴f(0)=c,f(1)=c,f(0)=f(1).
(2)|f(x2)-f(x1)|=|x23-x2-(x13-x1)|
=|(x23-x13)-(x2-x1)|
=|x2-x1|·|x22+x12+x1x2-1|,
∵x1、x2∈[0,1]且x1≠x2,
∴x12+x22+x1x2∈(0,3).
∴|x22+x12+x1x2-1|<2.
∴|f(x2)-f(x1)|<2|x2-x1|.
(3)∵f(0)=f(1),
∴|f(x2)-f(x1)|=|f(x2)-f(1)+f(0)-f(x1)|≤|f(x2)-f(1)|+|f(0)-f(x1)|
<2|x2-1|+2|0-x1|.
又x1、x2∈[0,1],
∴|f(x2)-f(x1)|<2(1-x2)+2x1=2-2x2+2x1. ①
当x2>x1时,|f(x2)-f(x1)|<2|x2-x1|=2x2-2x1. ②
①+②,得|f(x2)-f(x1)|<1.
同理可证,当x2<x1时有|f(x2)-f(x1)|<1.
练习册系列答案
相关题目