题目内容

在四面体A-BCD中,共顶点A的三条棱两两互相垂直,且AB=AC=1,AD=
2
若四面体的四个顶点在一个球面上,则B,D的球面距离为
3
3
分析:由已知中四面体A-BCD中,共顶点A的三条棱两两互相垂直,我们可得四面体的外接球即为以AB,AC,AD为长宽高的长方体的外接球,又由AB=AC=1,AD=
2
,可求出其外接球半径及弦BD的长,进而求出球心角∠BOD,代入弧长公式,即可求出B,D的球面距离.
解答:解:∵四面体A-BCD中,共顶点A的三条棱两两互相垂直,且AB=AC=1,AD=
2

故四面体的外接球即为以AB,AC,AD为长宽高的长方体的外接球
可求得此长方体的体对角线长为2
则球半径R=1
弦BD=
3

则cos∠BOD=
OB2+OD2-BD2
2OB•OD
=
1+1-3
2
=-
1
2

∴球心角∠BOD=120°
故B,D的球面距离为
120°
360°
•2π
×1=
3

故答案为:
3
点评:本题考查的知识点是球面距离及相关计算,余弦定理,弧长公式,其中根据已知条件求出球半径和球心角是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网