题目内容

已知圆C:(x-3)2+(y-4)2=4,
(Ⅰ)若直线l1过定点A(1,0),且与圆C相切,求l1的方程;
(Ⅱ)若圆D的半径为3,圆心在直线l2:x+y-2=0上,且与圆C外切,求圆D的方程.
(Ⅰ)①若直线l1的斜率不存在,即直线是x=1,符合题意.(1分)
②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0.
由题意知,圆心(3,4)到已知直线l1的距离等于半径2,
|3k-4-k|
k2+1
=2
(4分)
解之得k=
3
4

所求直线方程是x=1,3x-4y-3=0.(5分)
(Ⅱ)依题意设D(a,2-a),又已知圆的圆心C(3,4),r=2,
由两圆外切,可知CD=5
∴可知
(a-3)2+(2-a-4)2
=5,(7分)
解得a=3,或a=-2,
∴D(3,-1)或D(-2,4),
∴所求圆的方程为(x-3)2+(y+1)2=9或(x+2)2+(y-4)2=9.(9分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网