题目内容
已知向量
=(cosθ,sinθ)和
=(
-sinθ,cosθ),θ∈[π,2π].
(1)求|
+
|的最大值;
(2)当|
+
|=
时,求cos(
+
)的值.
| m |
| n |
| 2 |
(1)求|
| m |
| n |
(2)当|
| m |
| n |
8
| ||
| 5 |
| θ |
| 2 |
| π |
| 8 |
(1)
+
=(cosθ-sinθ+
,cosθ+sinθ),
|
+
|=
=
=
=2
∵θ∈[π,2π],
∴
≤θ+
≤
,
∴cos(θ+
)≤1,|
+
|max=2
.
(2)由已知及(1)得|
+
|=
=2
,
两边平方化简得cos(θ+
)=
.
又cos(θ+
)=2cos2(
+
)-1,
∴cos2(
+
)=
,
∵θ∈[π,2π],
∴
≤
+
≤
,
∴cos(
+
)=-
=-
.
| m |
| n |
| 2 |
|
| m |
| n |
(cosθ-sinθ+
|
=
4+2
|
=
4+4cos(θ+
|
=2
1+cos(θ+
|
∵θ∈[π,2π],
∴
| 5π |
| 4 |
| π |
| 4 |
| 9π |
| 4 |
∴cos(θ+
| π |
| 4 |
| m |
| n |
| 2 |
(2)由已知及(1)得|
| m |
| n |
8
| ||
| 5 |
1+cos(θ+
|
两边平方化简得cos(θ+
| π |
| 4 |
| 7 |
| 25 |
又cos(θ+
| π |
| 4 |
| θ |
| 2 |
| π |
| 8 |
∴cos2(
| θ |
| 2 |
| π |
| 8 |
| 16 |
| 25 |
∵θ∈[π,2π],
∴
| 5π |
| 8 |
| θ |
| 2 |
| π |
| 8 |
| 9π |
| 8 |
∴cos(
| θ |
| 2 |
| π |
| 8 |
| 4 |
| 5 |
| 4 |
| 5 |
练习册系列答案
相关题目