题目内容

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈[π,2π].
(1)求|
m
+
n
|的最大值;
(2)当|
m
+
n
|=
8
2
5
时,求cos(
θ
2
+
π
8
)的值.
(1)
m
+
n
=(cosθ-sinθ+
2
,cosθ+sinθ),
|
m
+
n
|=
(cosθ-sinθ+
2
)
2
+(cosθ+sinθ)2

=
4+2
2
(cosθ-sinθ)

=
4+4cos(θ+
π
4
)

=2
1+cos(θ+
π
4
)

∵θ∈[π,2π],
4
≤θ+
π
4
4

∴cos(θ+
π
4
)≤1,|
m
+
n
|max=2
2


(2)由已知及(1)得|
m
+
n
|=
8
2
5
=2
1+cos(θ+
π
4
)

两边平方化简得cos(θ+
π
4
)=
7
25

又cos(θ+
π
4
)=2cos2
θ
2
+
π
8
)-1,
∴cos2
θ
2
+
π
8
)=
16
25

∵θ∈[π,2π],
8
θ
2
+
π
8
8

∴cos(
θ
2
+
π
8
)=-
4
5
=-
4
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网