题目内容

一束光线从点F1(-1,0)出发,经直线l:2x-y+3=0上一点D反射后,恰好穿过点F2(1,0),
(1)求以F1、F2为焦点且过点D的椭圆C的方程;
(2)从椭圆C上一点M向以短轴为直径的圆引两条切线,切点分别为A、B,直线AB与x轴、y轴分别交于点P、Q.求|PQ|的最小值.
(1)设点F1关于直线l:2x-y+3=0的对称点A(m,n),
n
m+1
=-
1
2
2•
m-1
2
-
n
2
+3=0

解得
m=-
9
5
n=
2
5

则A(-
9
5
2
5

∵|PF1|=|PA|,根据椭圆的定义,得2a=|PF1|+|PF2|=|AF2|=
(-
9
5
-1)
2
+(
2
5
-0)
2
=2
2

a=
2
,c=1,b=
2-1
=1

∴椭圆C的方程为
x2
2
+y2=1


(2)设M(x0,y0),A(x1,y1),B(x2,y2),
x20
2
+
y20
=1
,切线AM、BM方程分别为x1x+y1y=1,x2x+y2y=1,
∵切线AM、BM都经过点M(x0,y0),
∴x1x0+y1y0=1,x2x0+y2y0=1.
∴直线AB方程为x0x+y0y=1,
P(0,
1
y0
)
Q(
1
x0
,0)

|PQ|2=
1
x20
+
1
y20
=(
1
x20
+
1
y20
)(
x20
2
+
y20
)=
1
2
+1+
x20
2
y20
+
y20
x20
3
2
+
2
=(
2
+1
2
)2

当且仅当
x20
=
2
y20
时,上式等号成立.
∴|PQ|的最小值为
2+
2
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网