题目内容
设函数f(x)=
x3+x2+(m2-1)x(x∈R),其中m>0,
(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(Ⅱ)求函数f(x)的单调区间与极值;
(Ⅲ)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.
(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(Ⅱ)求函数f(x)的单调区间与极值;
(Ⅲ)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.
解:(Ⅰ)当m=1时,
,
f′(x)=-x2+2x,故f′(1)=1,
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1。
(Ⅱ)f′(x)=x2+2x+m2-1,
令f′(x)=0,解得x=1-m或x=1+m,
因为m>0,所以1+m>1-m,
当x变化时,f′(x)、f(x)的变化情况如下表:

所以f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数,
函数f(x)在x=1-m处取得极小值f(1-m),且
,
函数f(x)在x=1+m处取得极大值f(1+m),且
。
(Ⅲ)由题设,
,
所以方程
有两个相异的实根x1,x2,
故
,且
,
解得
(舍)或
,
因为x1<x2,所以
,故
,
若
,则
,
而f(x1)=0,不合题意,
若1<x1<x2,对任意的x∈[x1,x2],有x>0,x-x1≥0,x-x2≤0,
则
,
又f(x1)=0,所以 f(x)在[x1,x2]上的最小值为0,
于是对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件是
,
解得
;
综上,m的取值范围是
。
f′(x)=-x2+2x,故f′(1)=1,
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1。
(Ⅱ)f′(x)=x2+2x+m2-1,
令f′(x)=0,解得x=1-m或x=1+m,
因为m>0,所以1+m>1-m,
当x变化时,f′(x)、f(x)的变化情况如下表:
所以f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数,
函数f(x)在x=1-m处取得极小值f(1-m),且
函数f(x)在x=1+m处取得极大值f(1+m),且
(Ⅲ)由题设,
所以方程
故
解得
因为x1<x2,所以
若
而f(x1)=0,不合题意,
若1<x1<x2,对任意的x∈[x1,x2],有x>0,x-x1≥0,x-x2≤0,
则
又f(x1)=0,所以 f(x)在[x1,x2]上的最小值为0,
于是对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件是
解得
综上,m的取值范围是
练习册系列答案
相关题目
设函数f(x)=x3-(
)x-2,则其零点所在区间为( )
| 1 |
| 2 |
| A、(0,1) |
| B、(1,2) |
| C、(2,3) |
| D、(3,4) |