题目内容

已知点P是椭圆:数学公式+数学公式=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且数学公式数学公式=0,则|OM|的取值范围是


  1. A.
    [0,3)
  2. B.
    (0,2数学公式
  3. C.
    [2数学公式,3)
  4. D.
    [0,4]
B
分析:结合椭圆 =1的图象,当点P在椭圆与y轴交点处时,点M与原点O重合,此时|OM|取最小值0.
当点P在椭圆与x轴交点处时,点M与焦点F1重合,此时|OM|取最大值.由此能够得到|OM|的取值范围.
解答:由椭圆 =1 的方程可得,c=
由题意可得,当点P在椭圆与y轴交点处时,点M与原点O重合,此时|OM|取最小值0.
当点P在椭圆与x轴交点处时,点M与焦点F1重合,此时|OM|趋于最大值 c=2
∵xy≠0,∴|OM|的取值范围是(0,).
故选B.
点评:本题考查椭圆的定义、标准方程,以及简单性质的应用,结合图象解题,事半功倍.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网