题目内容
19、若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=( )
分析:利用函数奇偶性以及周期性,将3或4的函数值问题转化为1或2的函数值问题求解即可.
解答:解:∵若f(x)是R上周期为5的奇函数
∴f(-x)=-f(x),f(x+5)=f(x),
∴f(3)=f(-2)=-f(2)=-2,
f(4)=f(-1)=-f(1)=-1,
∴f(3)-f(4)=-2-(-1)=-1.
故选D.
∴f(-x)=-f(x),f(x+5)=f(x),
∴f(3)=f(-2)=-f(2)=-2,
f(4)=f(-1)=-f(1)=-1,
∴f(3)-f(4)=-2-(-1)=-1.
故选D.
点评:本题考查函数奇偶性的应用,奇(偶)函数的定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x))(或f(-x)=f(x)),那么函数f(x)是奇(偶)函数.
练习册系列答案
相关题目