题目内容
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知bn>0(n∈N*),a1=b1=1,a2+b3=a3,S5=5(T3+b2).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求和:
+
+…+
.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求和:
| b1 |
| T1T2 |
| b2 |
| T2T3 |
| bn |
| TnTn+1 |
分析:(Ⅰ)利用等差数列、等比数列的通项与求和公式,求出公差与公比,即可求得结论;
(Ⅱ)利用裂项法,即可求数列的和.
(Ⅱ)利用裂项法,即可求数列的和.
解答:解:(Ⅰ)设{an}的公差为d,数列{bn}的公比为q,则
∵a1=b1=1,a2+b3=a3,S5=5(T3+b2),
∴q2=d,1+2d=1+2q+q2,
∴q2-2q=0,
∵q≠0,∴q=2,∴d=4
∴an=4n-3,bn=2n-1;
(Ⅱ)∵
=
=
(
-
)
∴
+
+…+
=
(
-
+
-
+…+
-
)
=
(
-
)=
(1-
).
∵a1=b1=1,a2+b3=a3,S5=5(T3+b2),
∴q2=d,1+2d=1+2q+q2,
∴q2-2q=0,
∵q≠0,∴q=2,∴d=4
∴an=4n-3,bn=2n-1;
(Ⅱ)∵
| bn |
| TnTn+1 |
| bn+1 |
| qTnTn+1 |
| 1 |
| q |
| 1 |
| Tn |
| 1 |
| Tn+1 |
∴
| b1 |
| T1T2 |
| b2 |
| T2T3 |
| bn |
| TnTn+1 |
| 1 |
| q |
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| T2 |
| 1 |
| T3 |
| 1 |
| Tn |
| 1 |
| Tn+1 |
=
| 1 |
| q |
| 1 |
| T1 |
| 1 |
| Tn+1 |
| 1 |
| q |
| 2 |
| 2n+1-1 |
点评:本题考查了等差与等比数列的综合计算,考查裂项法的运用,属于中档题.
练习册系列答案
相关题目