题目内容
设集合P={x|x=2k-1,k∈Z},集合Q={y|y=2n,n∈Z},若x0∈P,y0∈Q,a=x0+y0,b=x0•y0,则( )
| A.a∈P,b∈Q | B.a∈Q,b∈P | C.a∈P,b∈P | D.a∈Q,b∈Q |
∵x0∈P,y0∈Q,
设x0=2k-1,y0=2n,n,k∈Z,
则x0+y0=2k-1+2n=2(n+k)-1∈P,
x0y0=(2k-1)(2n)=2(2nk-n),故x0y0∈Q.
故a∈P,b∈Q,
故选A.
设x0=2k-1,y0=2n,n,k∈Z,
则x0+y0=2k-1+2n=2(n+k)-1∈P,
x0y0=(2k-1)(2n)=2(2nk-n),故x0y0∈Q.
故a∈P,b∈Q,
故选A.
练习册系列答案
相关题目
设集合P={x|x<1},集合Q={x|
<0},则P∩Q=( )
| 1 |
| x |
| A、{x|x<0} |
| B、{x|x>1} |
| C、{x|x<0或x>1} |
| D、∅ |