题目内容
设{an}是公差为-2的等差数列,若a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99等于( )
| A.82 | B.-82 | C.132 | D.-132 |
因为{an}是公差为-2的等差数列,
∴a3+a6+a9++a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50-132=-82.
故选B
∴a3+a6+a9++a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50-132=-82.
故选B
练习册系列答案
相关题目