题目内容

14.设F为抛物线C:y2=4x的焦点,过F的直线l与C相交于A、B两点,线段AB的垂直平分线交x轴于点M,若|AB|=6,则|FM|的长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

分析 先根据抛物线方程求出p的值,再由抛物线的性质求出AB的垂直平分线方程,可得到答案.

解答 解:∵抛物线y2=4x,∴p=2,
设经过点F的直线y=k(x-1)与抛物线相交于A、B两点,A(x1,y1),B(x2,y2),
直线y=k(x-1)代入y2=4x,整理可得k2x2-(2k2+4)x+k2=0,
∴x1+x2=2+$\frac{4}{{k}^{2}}$
利用抛物线定义,AB中点横坐标为x1+x2=|AB|-p=6-2=4.AB中点横坐标为2
∴2+$\frac{4}{{k}^{2}}$=4,∴k=±$\sqrt{2}$
AB中点纵坐标为k,AB的垂直平分线方程为y-k=-$\frac{1}{k}$(x-2),
令y=0,可得x=4,
∴|FM|=3.
故选:D.

点评 本题主要考查了抛物线的性质.属中档题.解题时要认真审题,仔细解答,注意等价转化思想的合理运用,确定AB的垂直平分线方程是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网