题目内容
(本小题满分16分)
已知
,
,且直线
与曲线
相切.
(1)若对
内的一切实数
,不等式
恒成立,求实数
的取值范围;
(2)当
时,求最大的正整数
,使得对
(
是自然对数的底数)内的任意
个实数
都有
成立;
(3)求证:![]()
.
【答案】
(1)设点
为直线
与曲线
的切点,则有
. (*)
,
. (**)
由(*)、(**)两式,解得
,
.
由
整理,得
,
,
要使不等式
恒成立,必须
恒成立.
设
,
,
,
当
时,
,则
是增函数,
,
是增函数,
,
.
因此,实数
的取值范围是
.
(2)当
时,![]()
,
在
上是增函数,
在
上的最大值为
.
要对
内的任意
个实数
都有![]()
成立,必须使得不等式左边的最大值小于或等于右边的最小值,
当
时不等式左边取得最大值,
时不等式右边取得最小值.
,解得
.因此,
的最大值为
.
(3)证明:当
时,得出
. 令
,
化简得
,
得出
.
【解析】
试题分析:(1)设点
为直线
与曲线
的切点,则有
. (*)
,
. (**)
由(*)、(**)两式,解得
,
.
由
整理,得
,
,
要使不等式
恒成立,必须
恒成立.
设
,
,
,
当
时,
,则
是增函数,
,
是增函数,
,
.
因此,实数
的取值范围是
.
(2)当
时,![]()
,
在
上是增函数,
在
上的最大值为
.
要对
内的任意
个实数
都有![]()
成立,必须使得不等式左边的最大值小于或等于右边的最小值,
当
时不等式左边取得最大值,
时不等式右边取得最小值.
,解得
.因此,
的最大值为
.
(3)证明:当
时,根据(1)的推导有,
时,
,
即
. 令
,得
,
化简得
,
.
考点:本题主要考查导数的几何意义,应用导数研究函数的单调性及极值,证明不等式。
点评:典型题,本题属于导数应用中的基本问题,像涉及恒成立问题,往往通过研究函数的最值达到解题目的。证明不等式问题,往往通过构造新函数,研究其单调性及最值,而达到目的。本题涉及对数函数,要特别注意函数的定义域。
练习册系列答案
相关题目