题目内容

4.已知△ABC,角A,B,C所对边分别为a,b,c,已知c=$\sqrt{5}$,cosC=$\frac{1}{3}$,sinA=$\sqrt{2}$cosB
(1)若函数f(x)=sin2x-2acos2x(x∈R),求函数f(x)的最值;
(2)若将f(x)的图象向右平移$\frac{π}{6}$单位长度,再将其横坐标缩短到原来的$\frac{1}{2}$倍,得到g(x)的图象,求g(x)的表达式及对称轴方程.

分析 求解三角形得到a的值.
(1)把求得的a代入f(x)=sin2x-2acos2x,利用二倍角的余弦降幂后求得函数最值;
(2)直接利用函数的图象平移求得g(x)的表达式,再由相位终边在x轴上求得g(x)的对称轴方程.

解答 解:∵cosC=$\frac{1}{3}$,C∈(0,π),
∴sinC=$\sqrt{1-co{s}^{2}C}=\sqrt{1-(\frac{1}{3})^{2}}$=$\frac{2\sqrt{2}}{3}$,
∵A+B+C=π,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{1}{3}$sinB+$\frac{2\sqrt{2}}{3}$cosB,
又sinA=$\sqrt{2}$cosB,
∴$\sqrt{2}$cosB=$\frac{1}{3}$sinB+$\frac{2\sqrt{2}}{3}$cosB,
∴tanB=$\sqrt{2}$,则sinB=$\frac{\sqrt{6}}{3}$,cosB=$\frac{\sqrt{3}}{3}$,
则sinA=$\sqrt{2}cosB=\sqrt{2}×\frac{\sqrt{3}}{3}=\frac{\sqrt{6}}{3}$,
由$\frac{a}{sinA}=\frac{c}{sinC}$,得$a=c•\frac{sinA}{sinC}=\sqrt{5}×\frac{\frac{\sqrt{6}}{3}}{\frac{2\sqrt{2}}{3}}=\frac{\sqrt{15}}{2}$.
(1)f(x)=sin2x-2acos2x=sin2x-2×$\frac{\sqrt{15}}{2}$cos2x
=$\frac{1-cos2x}{2}-\sqrt{15}$$\frac{1+cos2x}{2}$=$-\frac{1+\sqrt{15}}{2}cos2x+\frac{1-\sqrt{15}}{2}$.
∴f(x)max=1;
(2)将f(x)的图象向右平移$\frac{π}{6}$单位长度,得f(x-$\frac{π}{6}$)=$-\frac{1+\sqrt{15}}{2}cos2(x-\frac{π}{6})+\frac{1-\sqrt{15}}{2}$
=$-\frac{1+\sqrt{15}}{2}cos(2x-\frac{π}{3})+\frac{1-\sqrt{15}}{2}$,
再将其横坐标缩短到原来的$\frac{1}{2}$倍,得
g(x)=$-\frac{1+\sqrt{15}}{2}cos(4x-\frac{π}{3})+\frac{1-\sqrt{15}}{2}$.
由$4x-\frac{π}{3}=kπ$,得$x=\frac{π}{12}+\frac{kπ}{4},k∈Z$,
∴g(x)的对称轴方程为$x=\frac{π}{12}+\frac{kπ}{4},k∈Z$.

点评 本题考查三角形的解法,考查了三角函数的图象平移,训练了函数最值的求法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网