题目内容


如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.

(1) 求椭圆C的标准方程;

(2) 设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.


解:(1) 由题意,设椭圆C的标准方程为=1(a>b>0),则解得a=2,c=2.从而b2=a2-c2=4.所以所求椭圆C的标准方程为=1.

(2) (解法1)由(1)知F(2,0).由题意可设P(4,t),t>0.

线段OF的垂直平分线方程为x=1.①

因为线段FP的中点为,斜率为

所以FP的垂直平分线方程为y-=-(x-3),即y=-x+.②

联立①②,解得.

因为t>0,所以=2,当且仅当,即t=2时,圆心M到x轴的距离最小,此时圆心为M(1,2),半径为OM=3.故所求圆M的方程为(x-1)2+(y-2)2=9.

(解法2)由(1)知F(2,0).由题意可设P(4,t),t>0.因为圆M过原点O,故可设圆M的方程为x2+y2+Dx+Ey=0.将点F、P的坐标代入得解得

所以圆心M的坐标为,即(1,).因为t>0,所以≥2=2,当且仅当,即t=2时,圆心M到x轴的距离最小,此时E=-4.故所求圆M的方程为x2+y2-2x-4y=0.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网