题目内容
已知数列{an}中,a1=-1,且(n+1)an,(n+2)an+1,n成等差数列.(1)设bn=(n+1)an-n+2,求证:数列{bn}是等比数列;
(2)求{an}的通项公式;
(3)若an-bn≤kn对一切n∈N*恒成立,求实数k的取值范围.
(1)证明:(n+2)an+1=
(n+1)an+
, ∵b1=2a1-1+2=-1,
=
=
=
=
,
∴数列{bn}是等比数列.
(2)解:由(1)得bn=-(
)n-1,即(n+1)an-n+2=-(
)n-1.∴an=
(
)n-1+
.
(3)解:∵an-bn=
(
)n-1+
,∴an-bn≤kn,即k≥
(
)n-1+
.
设cn=
(
)n-1,dn=
,en=
(
)n-1+
,
则cn随着n的增大而减小.
∵dn+1-dn=
=
,
∴n≥5时,dn+1-dn<0,dn+1<dn,dn随着n的增大而减小,
则n≥5时,en随着n的增大而减小.
∴e1=0,e2=
,e3=
,e4=
,e5=
.则e1<e2>e3>e4>e5>…….∴e2=
最大.
∴实数k的取值范围k≥
.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|