题目内容
函数f(x)=|sinx+cosx|的最小正周期是( )
A.
| B.
| C.π | D.2π |
∵f(x)=|sinx+cosx|=
|sin(x+
)|
f(x+
)=
|sin(x+
)|=
|cosx|≠
|sin(x+
)|=f(x) 故排除A.
f(x+
)=
|sin(x+
+
)|=
|cos(x+
)|≠
|sin(x+
)|=f(x) 故排除B.
f(x+π)=
|sin(x++π+
)|=
|sin(x+
)|=f(x).
故选C
| 2 |
| π |
| 4 |
f(x+
| π |
| 4 |
| 2 |
| π |
| 2 |
| 2 |
| 2 |
| π |
| 4 |
f(x+
| π |
| 2 |
| 2 |
| π |
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
f(x+π)=
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
故选C
练习册系列答案
相关题目