题目内容

14.若M是抛物线y2=4x上一点,且在x轴上方,F是抛物线的焦点,直线FM的倾斜角为60°,则|FM|=4.

分析 由抛物线方程求出抛物线的焦点坐标,由直线倾斜角求出斜率,写出直线方程,和抛物线方程联立求得M的坐标,再由抛物线焦半径公式得答案.

解答 解:如图,

由抛物线y2=4x,得F(1,0),
∵直线FM的倾斜角为60°,∴${k}_{FM}=\sqrt{3}$,
则直线FM的方程为y=$\sqrt{3}(x-1)$,
联立$\left\{\begin{array}{l}{y=\sqrt{3}(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,即3x2-10x+3=0,解得${x}_{1}=\frac{1}{3}$(舍)或x2=3.
∴|FM|=3+1=4.
故答案为:4.

点评 本题考查了抛物线的简单几何性质,考查了数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网