题目内容

(2011•重庆模拟)已知非零向量列{
an
}
满足:
a1
=(1,1)
an
=(xnyn)=
1
2
(xn-1-yn-1xn-1+yn-1)(n≥2)

(Ⅰ)证明:{|
an
|}
是等比数列;
(Ⅱ)设bn=2-2lo
g
|
an
|
2
pk=
b1b3b2k-1
b2b4b2k
(k∈N*)
,求证:p1+p2+…+pn
2bn+1
-1
分析:(I)要证数列{|
an
|}
是等比数列,利用了等比数列的定义,由题意找数列|
an
|
和相邻项|
an+1
|
的比为常数,并利用等比数列通项公式求其通项
(II)由bn=2-2lo
g
|
an
|
2
pk=
b1b3b2k-1
b2b4b2k
(k∈N*)
,知bn=2-2log2(2
2-n
2
)
=n,即pk=
b1b3b2k-1
b2b4b2k
(k∈N*)
,由此能证明p1+p2+…+pn
2bn+1
-1
解答:(I)证明:|
an
|=
x
2
n
+
y
2
n

|
an+1
|=
x
2
n+1
+
y
2
n+1
=
(
xn-yn
2
)
2
+(
xn+yn
2
)
2
=
1
2
(
x
2
n
+
y
2
n
)

|
an+1
|
|
an
|
=
2
2
(常数),
∴{|
an
|}是等比数列,其中|
a1
|=
2
,公比 q=
2
2

|
an+1
| =
2
(
2
2
)
n-1
=2
2-n
2
.(5分)
(II)∵设bn=2-2lo
g
|
an
|
2
pk=
b1b3b2k-1
b2b4b2k
(k∈N*)

bn=2-2log2(2
2-n
2
)
=n,
pk=
b1b3b2k-1
b2b4b2k
(k∈N*)

=
1×3×5×…×(2k-1)
2×4×…×2k

p1+p2+…+pn
2bn+1
-1
点评:(I)此问重在考查等比数列的定义及等比数列的通项公式.
(II)此处重在考查了对数的运算性质进而准确求出pk的通项,之后又考查了建立m的不等式及解不等式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网