题目内容
(2011•重庆模拟)已知非零向量列{
}满足:
=(1,1),
=(xn,yn)=
(xn-1-yn-1,xn-1+yn-1)(n≥2).
(Ⅰ)证明:{|
|}是等比数列;
(Ⅱ)设bn=2-2lo
,pk=
(k∈N*),求证:p1+p2+…+pn<
-1.
| an |
| a1 |
| an |
| 1 |
| 2 |
(Ⅰ)证明:{|
| an |
(Ⅱ)设bn=2-2lo
| g | |
2 |
| b1b3…b2k-1 |
| b2b4…b2k |
| 2bn+1 |
分析:(I)要证数列{|
|}是等比数列,利用了等比数列的定义,由题意找数列|
|和相邻项|
|的比为常数,并利用等比数列通项公式求其通项
(II)由bn=2-2lo
,pk=
(k∈N*),知bn=2-2log2(2
)=n,即pk=
(k∈N*),由此能证明p1+p2+…+pn<
-1.
| an |
| an |
| an+1 |
(II)由bn=2-2lo
| g | |
2 |
| b1b3…b2k-1 |
| b2b4…b2k |
| 2-n |
| 2 |
| b1b3…b2k-1 |
| b2b4…b2k |
| 2bn+1 |
解答:(I)证明:|
|=
,
|
|=
=
=
,
∴
=
(常数),
∴{|
|}是等比数列,其中|
|=
,公比 q=
,
∴|
| =
•(
)n-1=2
.(5分)
(II)∵设bn=2-2lo
,pk=
(k∈N*),
∴bn=2-2log2(2
)=n,
∴pk=
(k∈N*)
=
,
∴p1+p2+…+pn<
-1.
| an |
|
|
| an+1 |
|
(
|
|
∴
|
| ||
|
|
| ||
| 2 |
∴{|
| an |
| a1 |
| 2 |
| ||
| 2 |
∴|
| an+1 |
| 2 |
| ||
| 2 |
| 2-n |
| 2 |
(II)∵设bn=2-2lo
| g | |
2 |
| b1b3…b2k-1 |
| b2b4…b2k |
∴bn=2-2log2(2
| 2-n |
| 2 |
∴pk=
| b1b3…b2k-1 |
| b2b4…b2k |
=
| 1×3×5×…×(2k-1) |
| 2×4×…×2k |
∴p1+p2+…+pn<
| 2bn+1 |
点评:(I)此问重在考查等比数列的定义及等比数列的通项公式.
(II)此处重在考查了对数的运算性质进而准确求出pk的通项,之后又考查了建立m的不等式及解不等式.
(II)此处重在考查了对数的运算性质进而准确求出pk的通项,之后又考查了建立m的不等式及解不等式.
练习册系列答案
相关题目