题目内容

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.
(1)求等比数列S1,S2,S4的公比;
(2)若S2=4,求{an}的通项公式;
(3)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最大正整数m.
分析:(1)利用S1,S2,S4成等比数列,建立等式,从而d=2a1,即可求等比数列S1,S2,S4的公比;
(2)利用S2=4,确定首项与公差,即可求{an}的通项公式;
(3)利用裂项法求和,求出Tn的最小值,从而使得Tn
m
20
对所有n∈N*都成立,等价于1>
m
20
,即可求得最大正整数m.
解答:解:(1)∵数列{an}为等差数列,∴S1=a1,S2=a2+d,S4=a4+6d,
∵S1,S2,S4成等比数列,∴S1S4=
S
2
2

a1(4a1+6d)=(2a1+d)2,∴2a1d=d2
∵公差为d不等于0,∴d=2a1
∴q=
S2
S1
=
4a1
a1
=4

(2)∵S2=4,∴2a1+d=4,
∵d=2a1,∴a1=1,d=2,
∴an=2n-1
(3)∵bn=
3
(2n-1)(2n+1)
=
3
2
(
1
2n-1
-
1
2n+1
)

Tn=
3
2
[(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)]
=
3
2
(1-
1
2n+1
)

∴(Tnmin=1
使得Tn
m
20
对所有n∈N*都成立,等价于1>
m
20
,∴m<20
∴m的最大值为19.
点评:本题考查等差数列与等比数列的综合,考查数列的通项与求和,考查数列与不等式的联系,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网