题目内容

已知函数(a∈R).
(Ⅰ)当时,讨论f(x)的单调性;
(Ⅱ)设g(x)=x2-2bx+4.当时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.
【答案】分析:(Ⅰ)直接利用函数与导数的关系,求出函数的导数,再讨论函数的单调性;
(Ⅱ)利用导数求出f(x)的最小值、利用二次函数知识或分离常数法求出g(x)在闭区间[1,2]上的最大值,然后解不等式求参数.
解答:解:(Ⅰ)
令h(x)=ax2-x+1-a(x>0)
(1)当a=0时,h(x)=-x+1(x>0),
当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减;
当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增.
(2)当a≠0时,由f′(x)=0,即ax2-x+1-a=0,解得
时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)单调递减;
时,,x∈(0,1)时h(x)>0,f′(x)<0,函数f(x)单调递减;
时,h(x)<0,f′(x)>0,函数f(x)单调递增;
时,h(x)>0,f′(x)<0,函数f(x)单调递减.
当a<0时,当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减;
当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增.
综上所述:当a≤0时,函数f(x)在(0,1)单调递减,(1,+∞)单调递增;
时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)在(0,+∞)单调递减;
时,函数f(x)在(0,1)单调递减,单调递增,单调递减.

(Ⅱ)当时,f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以对任意x1∈(0,2),

又已知存在x2∈[1,2],使f(x1)≥g(x2),所以,x2∈[1,2],(※)
又g(x)=(x-b)2+4-b2,x∈[1,2]
当b<1时,g(x)min=g(1)=5-2b>0与(※)矛盾;
当b∈[1,2]时,g(x)min=g(b)=4-b2≥0也与(※)矛盾;
当b>2时,
综上,实数b的取值范围是
点评:本题将导数、二次函数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了同学们分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网