题目内容
已知函数f(x)对任意x、y∈R都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.
(1)判断函数f(x)的奇偶性.
(2)当x∈[-3,3]时,函数f(x)是否有最值?如果有,求出最值;如果没有,请说明理由.
答案:
解析:
提示:
解析:
|
解:(1)∵f(x+y)=f(x)+f(y), ∴f(0)=f(0)+f(0) 而0=x-x,因此0=f(0)=f(x-x)=f(x)+f(-x), 即f(x)+f(-x)=0 ∴函数f(x)为奇函数. (2)设x1<x2,由f(x+y)=f(x)+f(y),知 f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1),∵x1<x2,∴x2-x1>0. 又当x>0时,f(x)<0, ∴f(x2-x1)=f(x2)-f(x1)<0.∴f(x2)<f(x1).∴f(x1)>f(x2). ∴函数f(x)是定义域上的减函数,当x∈[-3,3]时,函数f(x)有最值. 当x=-3时,函数有最大值f(-3);当x=3时,函数有最小值f(3). f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=-6,f(-3)=-f(3)=6. ∴当x=-3时,函数有最大值6;当x=3时,函数有最小值-6. |
提示:
|
本题中的函数f(x)是抽象函数,则用定义法判断它的奇偶性和单调性.(1)首先利用赋值法求得f(0),再利用定义法判断f(x)的奇偶性;(2)利用定义法判断函数f(x)在[-3,3]内的单调性,利用单调法求出最值. |
练习册系列答案
相关题目