题目内容

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC(  )
A、一定是锐角三角形B、一定是直角三角形C、一定是钝角三角形D、可能是锐角三角形,也可能是钝角三角形
分析:先根据正弦定理及题设,推断a:b:c=5:11:13,再通过余弦定理求得cosC的值小于零,推断C为钝角.
解答:解:∵根据正弦定理,
A
sina
=
B
sinb
=
C
sinc

又sinA:sinB:sinC=5:11:13
∴a:b:c=5:11:13,
设a=5t,b=11t,c=13t(t≠0)
∵c2=a2+b2-2abcosC
∴cosC=
a2+b2-c2
2ab
=
25t2+121t2-169t2
2×5t×11t
=-
23
110
<0
∴角C为钝角.
故选C
点评:本题主要考查余弦定理的应用.注意与正弦定理的巧妙结合.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网