题目内容
实数x,y满足tanx=x,tany=y,且|x|≠|y|,则| sin(x+y) |
| x+y |
| sin(x-y) |
| x-y |
分析:利用同角三角函数的基本关系分别求得sinx=xcosx和siny=ycosy,利用两角和公式对原式展开后代入上式,化简整理求得答案.
解答:解:tanx=
=x
∴sinx=xcosx
同理,siny=ycosy
所以原式=
-
=
-
=
-
=cosxcosy-cosxcosy
=0
故答案为:0
| sinx |
| cosx |
∴sinx=xcosx
同理,siny=ycosy
所以原式=
| sinxcosy+cosxsiny |
| x+y |
| sinxcosy-cosxsiny |
| x-y |
=
| xcosxcosy-ycosxcosy |
| x-y |
| xcosxcosy+ycosxcosy |
| x+y |
=
| cosxcosy(x+y) |
| x+y |
| cosxcosy(x-y) |
| x-y |
=cosxcosy-cosxcosy
=0
故答案为:0
点评:本题主要考查了三角函数的化简求值.解题的关键是利用好sinx和cosx与x和y之间的关系.
练习册系列答案
相关题目