题目内容

实数x,y满足tanx=x,tany=y,且|x|≠|y|,则
sin(x+y)
x+y
-
sin(x-y)
x-y
=
 
分析:利用同角三角函数的基本关系分别求得sinx=xcosx和siny=ycosy,利用两角和公式对原式展开后代入上式,化简整理求得答案.
解答:解:tanx=
sinx
cosx
=x
∴sinx=xcosx
同理,siny=ycosy
所以原式=
sinxcosy+cosxsiny
x+y
-
sinxcosy-cosxsiny
x-y

=
xcosxcosy-ycosxcosy
x-y
-
xcosxcosy+ycosxcosy
x+y

=
cosxcosy(x+y)
x+y
-
cosxcosy(x-y)
x-y

=cosxcosy-cosxcosy
=0
故答案为:0
点评:本题主要考查了三角函数的化简求值.解题的关键是利用好sinx和cosx与x和y之间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网