题目内容
若log2[log3(log4x)]=log3[log4(log2y)]=log4[log2(log3z)]=0,则x+y-z等于( )A.50 B.58 C.71 D.111
解析:由条件得log2[log3(log4x)]=0,
∴log3(log4x)=1,
∴log4x=3,
∴x=43=64.
同理y=16,z=9,
∴x+y-z=71.
答案:C
练习册系列答案
相关题目
若log2[log
(log2x)]=log3[log
(log3y)]=log5[log
(log5z)]=0,则x、y、z的大小关系是( )
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| A、z<x<y |
| B、x<y<z |
| C、y<z<x |
| D、z<y<x |