搜索
题目内容
考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )
A.
B.
C.
D.
试题答案
相关练习册答案
D
甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,共有
种不同取法,其中所得的两条直线相互平行但不重合有
共12对,所以所求概率为
,选D.
练习册系列答案
中考快递真题28套系列答案
课标新卷系列答案
课时练测试卷系列答案
小考冲刺金卷系列答案
初中学业水平考试总复习专项复习卷加全真模拟卷系列答案
培优总复习系列答案
语法精讲精练系列答案
启东专项作业本系列答案
阅读训练与写作提升系列答案
木头马阅读高效训练80篇系列答案
相关题目
圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO的中点,动点P在圆锥底面内(包括圆周)。若AM⊥MP,则P点形成的轨迹的长度为( )
A.
B.
C. 3
D.
已知:
,
α
⊥
γ
,
β
⊥
γ
,
b
∥
α
,
b
∥
β
.
求证:
a
⊥
γ
且
b
⊥
γ
.
已知直线
,则直线
至多可以确定平面的个数为 ( )
A.1
B.2
C.3
D.4
一条线段AB的两端点A,B和平面α的距离分别是30cm和50cm,P为线段AB上一点,且PA:PB=3:7,则P到平面α的距离为( )
A.36cm
B.6cm
C.36cm或6cm
D.以上都不对
在如图所示的几何体ABCED中,EC⊥面ABC,DB⊥面ABC,CE=CA=CB=2DB,∠ACB=90°,M为
AD的中点.(1)证明:EM⊥AB;(2)求直线BM和平面ADE所成角的正弦值.
如图,四棱锥S-ABCD的正视图是边长为2的正方形,侧视图和俯视图是全等的等腰三角形,直线边长为2.
(1)求二面角C-SB-A的大小;
(2)P为棱SB上的点,当SP的长为何值时,CP⊥SA?
如图,已知四边形ABCD与CDEF均为正方形,平面ABCD⊥平面CDEF.
(Ⅰ)求证:ED⊥平面ABCD;
(Ⅱ)求二面角D-BE-C的大小.
如图,已知ABCD是矩形,E是以CD为直径的半圆周上一点,且面CDE⊥面ABCD.
求证:CE⊥平面ADE.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案