题目内容
【题目】如图,一个底面水平放置的倒圆锥形容器,它的轴截面是正三角形,容器内有一定量的水,水深为
. 若在容器内放入一个半径为 1 的铁球后,水面所在的平面恰好经过铁球的球心
(水没有溢出),则
的值为( )
![]()
A.
B.
C.
D. ![]()
【答案】B
【解析】
作OD⊥AC,垂足为D,则球的半径r=OD=1,此时OA=2r=2,底面半径R=2×tan30°,可得半球和水的体积和,从而得水的体积,将水的体积用h表示出来,进而求出h.
作OD⊥AC,垂足为D,则球的半径r=OD=1,此时OA=2r=2,底面半径R=2×tan30°=
,当锥体内水的高度为h时,底面半径为h×tan30°=
h,
设加入小球后水面以下的体积为V′,原来水的体积为V,球的体积为V球.
所以水的体积为:![]()
,
解得:
.
故选:B.
![]()
【题目】某村庄对村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:
每年体检 | 未每年体检 | 合计 | |
老年人 | 7 | ||
年轻人 | 6 | ||
合计 | 50 |
已知抽取的老年人、年轻人各25名
(Ⅰ)请完成上面的列联表;
(Ⅱ)试运用独立性检验思想方法,判断能否有99%的把握认为每年是否体检与年龄有关?
附:
,
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】为了调查喜欢看书是否与性别有关,某校调查小组就“是否喜欢看书”这个问题,在全校随机调研了100名学生.
(1)完成下列
列联表:
喜欢看书 | 不喜欢看书 | 合计 | |
女生 | 15 | 50 | |
男生 | 25 | ||
合计 | 100 |
(2)能否在犯错率不超过0.025的前提下认为“喜欢看书与性别有关”.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)