题目内容
设函数f(x)=xex,g(x)=ax2+x.
(Ⅰ)若f(x)与g(x)具有完全相同的单调区间,求a的值;
(Ⅱ)若当x≥0时恒有f(x)≥g(x),求a的取值范围.
设函数f(x)=xex.
(1)求函数f(x)的单调区间;
(2)若常数k>0,求不等式(x)+k(x+1)f(x)<0的解集.
已知向量a=(cosx,sinx),b=(cos,sin),c=(,-1),其中x∈R,
(1)当a·b=时,求x值的集合;
(2)设函数f(x)=(a-c)2,求f(x)的最小正周期及其单调增区间.
设函数f(x)=(1+x)2-2ln (1+x).
(2)若关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,求实数a的取值范围.
(14分)设函数f(x)=xn(n≥2,n∈N*)
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范围;
(2)若Fn(x)=f(x-b)-f(x-a),对任意n≥a (2≥a>b>0),
证明:F(n)≥n(a-b)(n-b)n-2。