题目内容
已知函数f(x)=x-4
+4(x≥4)的反函数为f-1(x),数列{an}满足:a1=1,an+1=f-1(an),(n∈N*),数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为
的等比数列.
(Ⅰ)求证:数列{
}为等差数列;
(Ⅱ)若cn=
•bn,求数列{cn}的前n项和Sn.
| x |
| 1 |
| 3 |
(Ⅰ)求证:数列{
| an |
(Ⅱ)若cn=
| an |
(Ⅰ)证明:∵函数f(x)=x-4
+4(x≥4),即y=x-4
+4(x≥4),
∴x=
+2(y≥0),∴f-1(x)=(
+2)2 (x≥2),
∴an+1=f-1(an)=(
+2)2,
即
-
=2 (n∈N*).
∴数列{
}是以
=1为首项,公差为2的等差数列.
(Ⅱ)由(Ⅰ)得:
=1+2(n-1)=2n-1,
即an=(2n-1)2 (n∈N*).
由b1=1,当n≥2时,bn-bn-1=1×(
)n-1=(
)n-1,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=1+
+(
)2+…+(
)n-1
=
=
(1-
).
因而bn=
(1-
) (n∈N*).
由cn=
•bn,得:cn=
•
(1-
)=
(2n-1)(1-
),
∴Sn=c1+c2+…+cn
=
(1-
)+
(3-
)+
(5-
)+…+
(2n-1-
)
=
[(1+3+5+…+2n-1)-(
+
+
+…+
)].
令Tn=
+
+
+…+
①
则
Tn=
+
+
+…+
+
②
①-②得,
Tn=
+2(
+
+…+
)-
=
+
-
=
+
(1-
)-
.
∴Tn=1-
.
又1+3+5+…+(2n-1)=n2.
∴Sn=
(n2-1+
).
| x |
| x |
∴x=
| y |
| x |
∴an+1=f-1(an)=(
| an |
即
| an+1 |
| an |
∴数列{
| an |
| a1 |
(Ⅱ)由(Ⅰ)得:
| an |
即an=(2n-1)2 (n∈N*).
由b1=1,当n≥2时,bn-bn-1=1×(
| 1 |
| 3 |
| 1 |
| 3 |
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=1+
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=
1×(1-(
| ||
1-
|
=
| 3 |
| 2 |
| 1 |
| 3n |
因而bn=
| 3 |
| 2 |
| 1 |
| 3n |
由cn=
| an |
| (2n-1)2 |
| 3 |
| 2 |
| 1 |
| 3n |
| 3 |
| 2 |
| 1 |
| 3n |
∴Sn=c1+c2+…+cn
=
| 3 |
| 2 |
| 1 |
| 3 |
| 3 |
| 2 |
| 3 |
| 32 |
| 3 |
| 2 |
| 5 |
| 33 |
| 3 |
| 2 |
| 2n-1 |
| 3n |
=
| 3 |
| 2 |
| 1 |
| 3 |
| 3 |
| 32 |
| 5 |
| 33 |
| 2n-1 |
| 3n |
令Tn=
| 1 |
| 3 |
| 3 |
| 32 |
| 5 |
| 33 |
| 2n-1 |
| 3n |
则
| 1 |
| 3 |
| 1 |
| 32 |
| 3 |
| 33 |
| 5 |
| 34 |
| 2n-3 |
| 3n |
| 2n-1 |
| 3n+1 |
①-②得,
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
=
| 1 |
| 3 |
2×
| ||||
1-
|
| 2n-1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 2n-1 |
| 3n+1 |
∴Tn=1-
| n+1 |
| 3n |
又1+3+5+…+(2n-1)=n2.
∴Sn=
| 3 |
| 2 |
| n+1 |
| 3n |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|