题目内容

已知函数f(x)=x-4
x
+4(x≥4)的反函数为f-1(x),数列{an}满足:a1=1,an+1=f-1(an),(n∈N*),数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为
1
3
的等比数列.
(Ⅰ)求证:数列{
an
}为等差数列;
(Ⅱ)若cn=
an
•bn,求数列{cn}的前n项和Sn
(Ⅰ)证明:∵函数f(x)=x-4
x
+4(x≥4),即y=x-4
x
+4
(x≥4),
x=
y
+2
(y≥0),∴f-1(x)=(
x
+2)2
 (x≥2),
∴an+1=f-1(an)=(
an
+2)2

an+1
-
an
=2
 (n∈N*).
∴数列{
an
}是以
a1
=1
为首项,公差为2的等差数列.
(Ⅱ)由(Ⅰ)得:
an
=1+2(n-1)=2n-1

an=(2n-1)2 (n∈N*).
由b1=1,当n≥2时,bn-bn-1=1×(
1
3
)n-1=(
1
3
)n-1

∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1
=1+
1
3
+(
1
3
)2+…+(
1
3
)n-1

=
1×(1-(
1
3
)n)
1-
1
3

=
3
2
(1-
1
3n
)

因而bn=
3
2
(1-
1
3n
)
 (n∈N*).
由cn=
an
•bn,得:cn=
(2n-1)2
3
2
(1-
1
3n
)
=
3
2
(2n-1)(1-
1
3n
)

∴Sn=c1+c2+…+cn
=
3
2
(1-
1
3
)+
3
2
(3-
3
32
)+
3
2
(5-
5
33
)+…+
3
2
(2n-1-
2n-1
3n
)

=
3
2
[(1+3+5+…+2n-1)-(
1
3
+
3
32
+
5
33
+…+
2n-1
3n
)]

Tn=
1
3
+
3
32
+
5
33
+…+
2n-1
3n
   ①
1
3
Tn=
1
32
+
3
33
+
5
34
+…+
2n-3
3n
+
2n-1
3n+1
  ②
①-②得,
2
3
Tn=
1
3
+2(
1
32
+
1
33
+…+
1
3n
)-
2n-1
3n+1

=
1
3
+
1
9
(1-
1
3n-1
)
1-
1
3
-
2n-1
3n+1

=
1
3
+
1
3
(1-
1
3n-1
)-
2n-1
3n+1

Tn=1-
n+1
3n

又1+3+5+…+(2n-1)=n2
Sn=
3
2
(n2-1+
n+1
3n
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网