题目内容

已知函数f(x)=x2+bx+c,其中0≤b≤4,0≤c≤4.记函数f(x)满足条件:为事件为A,则事件A发生的概率为( )
A.
B.
C.
D.
【答案】分析:我们可以以b,c为横纵坐标建立坐标系,并把0≤b≤4,0≤c≤4所表示的区域表示出来,并将代入函数f(x)=x2+bx+x转化为一个关于b、c的不等式,画出其表示的图形,计算面积后,代入几何概型公式,即可求解.
解答:解:
以b,c为横纵坐标建立坐标系如图:
所以满足条件的概率为
故选C
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网