题目内容

设{an}是公比为q的等比数列,令bn=an+1(n=1,2,…),若数列{bn}的连续四项在集合{-53,-23,19,37,82}中,则q等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:根据bn=an+1可知 an=bn-1,依据{bn}有连续四项在{-53,-23,19,37,82}中,则可推知则{an}有连续四项在{-54,-24,18,36,81}中,按绝对值的顺序排列上述数值,可求{an}中连续的四项,求得q
解答:{bn}有连续四项在{-53,-23,19,37,82}中且bn=an+1 an=bn-1
则{an}有连续四项在{-54,-24,18,36,81}中
∵{an}是等比数列,等比数列中有负数项则q<0,且负数项为相隔两项
∴等比数列各项的绝对值递增或递减,按绝对值的顺序排列上述数值18,-24,36,-54,81}
相邻两项相除-=-,-=-=-=-
则可得,-24,36,-54,81是{an}中连续的四项,此时q=-
同理可求q=-
∴q=-或 q=-
故选B
点评:本题考查等比数列的公比,注意递推公式的应用,理解题意,按绝对值顺序排列集合中的元素是解题的关键
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网