题目内容

已知α为钝角,且tan(α+
π
4
)=-
1
7

求:(Ⅰ)tanα;
(Ⅱ)
cos2α+1
2
cos(α-
π
4
)-sin2α
分析:(Ⅰ)由tan(α+
π
4
)=-
1
7
化简,直接求出tanα;
(Ⅱ)化简
cos2α+1
2
cos(α-
π
4
)-sin2α
为关于tanα的表达式,利用(Ⅰ)的结果求解即可.
解答:解:(Ⅰ)由已知:tan(α+
π
4
)=
tanα+1
1-tanα
=-
1
7
(2分)
tanα=-
4
3
(5分)
(Ⅱ)
cos2α+1
2
cos(α-
π
4
)-sin2α
=
2cos2α
sinα+cosα-sin2α
=
2cos2α
sinα+cosα-2sinαcosα
(8分)
α∈(
π
2
,π)
tanα=-
4
3

sinα=
4
5
,cosα=-
3
5
(10分)
2cos2α
sinα+cosα-2sinαcosα
=
9
25
4
5
-
3
5
-2×
4
5
×(-
3
5
)
=
18
29
(12分)
点评:本题考查两角和与差的正切函数,两角和与差的余弦函数,二倍角的正弦,二倍角的余弦,考查学生计算能力是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网