题目内容

设偶函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式数学公式<0的解集为


  1. A.
    (-∞,-1)∪(0,1)
  2. B.
    (-1,0)∪(1,+∞)
  3. C.
    (-∞,-1)∪(1,+∞)
  4. D.
    (-1,0)∪(0,1)
A
分析:根据偶函数f(x)在(0,+∞)上为增函数,确定函数f(x)在(-∞,0)上为减函数,从而可解不等式.
解答:∵f(x)是偶函数,

∴x>0时,f(x)<0
∵f(1)=0,∴f(x)<f(1),
∵函数f(x)在(0,+∞)上为增函数,
∴0<x<1
∵f(1)=0,∴f(-1)=f(1)=0
∵x<0时,f(x)>0,∴f(x)>f(-1)
∵偶函数f(x)在(0,+∞)上为增函数,
∴函数f(x)在(-∞,0)上为减函数,
∴x<-1
综上,不等式<0的解集为(-∞,-1)∪(0,1),
故选A.
点评:本题考查函数单调性与奇偶性的结合,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网