题目内容
数列{an}满足an+an+1=
(n∈N*),a1=1,Sn是{an}的前n项和,则S21=______
| 1 |
| 2 |
∵an+an+1=
(n∈N*),a1+a2=a2+a3,
∴a1=a3,
a3+a4=a4+a5
∴a1=a3=a5=…=a2n-1,
即奇数项都相等
∴a21=a1=1
∴S21=(a1+a2)+(a3+a4)+…+(a19+a20)+a21
=10×
+1
=6.
答案:6.
| 1 |
| 2 |
∴a1=a3,
a3+a4=a4+a5
∴a1=a3=a5=…=a2n-1,
即奇数项都相等
∴a21=a1=1
∴S21=(a1+a2)+(a3+a4)+…+(a19+a20)+a21
=10×
| 1 |
| 2 |
=6.
答案:6.
练习册系列答案
相关题目