题目内容
已知f(x+y)=f(x)f(y)对任意的非负实数x,y都成立,且f(1)=4,则
+
+
+
+…+
=
| f(1) |
| f(0) |
| f(2) |
| f(1) |
| f(3) |
| f(2) |
| f(4) |
| f(3) |
| f(2010) |
| f(2009) |
8040
8040
.分析:在f(x+y)=f(x)f(y)中,令y=1可得,f(x+1)=f(x)f(1),进而可得
=
=f(1)=4,
将其代入
+
+
+
+…+
中,可得答案.
| f(x+1) |
| f(x) |
| f(x)•f(1) |
| f(x) |
将其代入
| f(1) |
| f(0) |
| f(2) |
| f(1) |
| f(3) |
| f(2) |
| f(4) |
| f(3) |
| f(2010) |
| f(2009) |
解答:解:根据题意,在f(x+y)=f(x)f(y)中,
令y=1可得,f(x+1)=f(x)f(1),
=
=f(1)=4,
则
+
+
+…+
=2010×4=8040;
故答案为8040.
令y=1可得,f(x+1)=f(x)f(1),
| f(x+1) |
| f(x) |
| f(x)•f(1) |
| f(x) |
则
| f(1) |
| f(0) |
| f(2) |
| f(1) |
| f(3) |
| f(2) |
| f(2010) |
| f(2009) |
故答案为8040.
点评:本题考查抽象函数的运用,解决这类问题一般用特殊值法.
练习册系列答案
相关题目