题目内容

已知函数,函数-2a+2(a>0),若存在x1、x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是   
【答案】分析:根据x的范围确定函数f(x)的值域和g(x)的值域,进而根据f(x1)=g(x2)成立,推断出,先看当二者的交集为空集时刻求得a的范围,进而可求得当集合的交集非空时a的范围.
解答:解:当x∈(,1]时,是增函数,y∈(,1],
当x∈[0,]时,f(x)=-x+是减函数,
∴y∈[0,],如图.
∴函数的值域为[0,1].
值域是
∵存在x1、x2∈[0,1]使得f(x1)=g(x2)成立,

,则2-2a>1或2-<0,即
∴a的取值范围是
故答案为:
点评:本题主要考查了三角函数的最值,分段函数的值域问题,不等式的应用.解题的关键是通过看两函数值域之间的关系来确定a的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网