题目内容
20.已知数列{an}的前n项和为Sn,且满足Sn-2an-n=0(n∈N+),则数列{an-1}的通项公式为-2n.分析 通过Sn-2an-n=0(n∈N+)与Sn-1-2an-1-n+1=0(n≥2)作差、变形可知an-1=2(an-1-1),进而计算即得结论.
解答 解:∵Sn-2an-n=0(n∈N+),
∴Sn-1-2an-1-n+1=0(n≥2),
两式相减得:an=2an-1-1,
变形可得:an-1=2(an-1-1),
又∵a1=2a1+1,即a1-1=-1-2=-2,
∴数列{an-1}是首项为-2、公比为2的等比数列,
∴数列{an-1}=-2•2n-1=-2n,
故答案为:-2n.
点评 本题考查数列的通项,构造数列是解决本题的关键,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
5.微商是通过微信,微博开展电子商务的商人,为了调查微商从业人员的年龄分布情况,某机构从A,B两个街道中随机抽取了50名微商进行统计调查,如表所示:
已知从50名微商中随机抽取一名,抽到的年龄在30~40岁的概率是0.3.
(1)求x,y的值,根据表中数据判断哪一个街道年龄在30岁以下从事微商的概率更大;
(2)为了了解这50名微商的工作情况,决定按分层抽样的方法,从中选取10名作为一个样本进行跟踪采访,然后再从样本中年龄在25~30岁的人员中随机选取2人接受电视台的专访,求接受专访的2人来自不同街道的概率.
| 年龄段 | 20~25 | 25~30 | 30~40 |
| A街道 | 5 | x | 10 |
| B街道 | 5 | 10 | y |
(1)求x,y的值,根据表中数据判断哪一个街道年龄在30岁以下从事微商的概率更大;
(2)为了了解这50名微商的工作情况,决定按分层抽样的方法,从中选取10名作为一个样本进行跟踪采访,然后再从样本中年龄在25~30岁的人员中随机选取2人接受电视台的专访,求接受专访的2人来自不同街道的概率.