题目内容
在数列{an}中,若a1=1,a2=
,
=
(n∈N*),则a20=( )
| 1 |
| 2 |
| 2 |
| an+1 |
| an+an+2 |
| anan+2 |
分析:由
=
,得
=
+
,可判断{
}为等差数列,从而可求得
,进而可求得an,由此可得答案.
| 2 |
| an+1 |
| an+an+2 |
| anan+2 |
| 2 |
| an+1 |
| 1 |
| an+2 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
解答:解:由
=
,得
=
+
,即
为
与
的等差中项,
∴{
}为等差数列,首项为
=1,公差为:
-
=2-1=1,
∴
=1+(n-1)×1=n,
∴an=
,
故a20=
,
故选D.
| 2 |
| an+1 |
| an+an+2 |
| anan+2 |
| 2 |
| an+1 |
| 1 |
| an+2 |
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+2 |
∴{
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a1 |
∴
| 1 |
| an |
∴an=
| 1 |
| n |
故a20=
| 1 |
| 20 |
故选D.
点评:本题考查由数列递推式求数列通项,考查等差数列的定义,考查学生的运算求解能力,属中档题.
练习册系列答案
相关题目