题目内容
在△ABC中,M是BC的中点,AM=3,点P在AM上且满足
=2
,则
•(
+
)=
| AP |
| PM |
| PA |
| PB |
| PC |
-4
-4
.分析:先根据AM=3,点P在AM上且满足
=2
,求|
|的值,再根据M是BC的中点,计算
+
,最后计算
•(
+
)即可.
| AP |
| PM |
| AP |
| PB |
| PC |
| PA |
| PB |
| PC |
解答:解:∵AM=3,点P在AM上且满足
=2
,∴|
|=2
∵M是BC的中点,∴
+
=2
=
∴
•(
+
)=
•
=-|
|2=-4
故答案为-4
| AP |
| PM |
| AP |
∵M是BC的中点,∴
| PB |
| PC |
| PM |
| AP |
∴
| PA |
| PB |
| PC |
| PA |
| AP |
| AP |
故答案为-4
点评:本题考查了向量的加法与向量的数量积的运算,属基础题,必须掌握.
练习册系列答案
相关题目