题目内容
其中第(1)(2)问文理科学生都要做,第(3)问按题目要求分文理来做。
已知
为坐标原点,向量
,
点
是直线
上的一点,且
.
求点
的坐标(用
表示);
若
三点共线,求以线段
为邻边的平行四边形的对角线长;
(3)(文科生做)记函数
•
,且
,求
的值.
(3)(理科生做)记函数
•
,
讨论函数
的单调性,并求其值域.
已知
求点
若
(3)(文科生做)记函数
(3)(理科生做)记函数
(1)
;(2)
;(3)(文)
(理)
.
试题分析:
解题思路:(1)利用向量的坐标运算和向量相等进行求解;(2)将三点共线转化为向量共线,再利用共线条件确定
规律总结:1.涉及平面向量运算问题,主要思路是:首先,利用平面向量基本定理,选择合适的向量作为基底,来表示有关向量;再利用数量积的有关公式进行求解(模长公式、夹角公式等);
2.涉及三角函数的最值或求值问题,往往先根据三角函数恒等变形化为
试题解析:(1)设点
∵
∴
∴点
由
所以以
(3)(文科生做)∵
又
(3)(理科生做)∵
∵
∴
且
∴
练习册系列答案
相关题目