题目内容
给出以下结论:
①函数y=2x与函数y=log2x的图象关于y轴对称;
②
=
;
③函数y=ln(1+x)-ln(1-x)为奇函数;
④函数f(x)的定义域为[-1,4],则函数f(x2)的定义域为[-2,2]
其中正确的是______.
①函数y=2x与函数y=log2x的图象关于y轴对称;
②
| 3 | -5 |
| 6 | (-5)2 |
③函数y=ln(1+x)-ln(1-x)为奇函数;
④函数f(x)的定义域为[-1,4],则函数f(x2)的定义域为[-2,2]
其中正确的是______.
由于函数y=2x与函数y=log2x的互为反函数,故它们的图象关于直线y=x对称,故①不正确.
由于
<0,而
=
>0,∴
≠
,故②不正确.
由于函数y=f(x)=ln(1+x)-ln(1-x)的定义域为(-1,1),关于原点对称,且f(-x)=ln(1-x)-ln(1+x)=-f(x),
故函数y=ln(1+x)-ln(1-x)为奇函数,故③正确.
由于函数f(x)的定义域为[-1,4],可得-1≤x2≤4,解得-2≤x≤2,则函数f(x2)的定义域为[-2,2],故④正确.
故答案为 ③④.
由于
| 3 | -5 |
| 6 | (-5)2 |
| 6 | 52 |
| 3 | -5 |
| 6 | (-5)2 |
由于函数y=f(x)=ln(1+x)-ln(1-x)的定义域为(-1,1),关于原点对称,且f(-x)=ln(1-x)-ln(1+x)=-f(x),
故函数y=ln(1+x)-ln(1-x)为奇函数,故③正确.
由于函数f(x)的定义域为[-1,4],可得-1≤x2≤4,解得-2≤x≤2,则函数f(x2)的定义域为[-2,2],故④正确.
故答案为 ③④.
练习册系列答案
相关题目