题目内容
【题目】已知函数f(x)=lnx
.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
【答案】(1)见解析;(2)
;(3)见解析
【解析】
(1)将a=4代入f(x)求出f(x)的导函数,然后根据导函数的符号,得到函数的单调区间;
(2)根据条件将问题转化为
在
,
上恒成立问题,然后根据函数的单调性求出
的范围;
(3)根据条件将问题转化为
成立问题,令
,即
成立,再利用函数的单调性证明即可.
解:(1)
的定义域是
,
,
所以
时,
,
由
,解得
或
,
由
,解得
,
故
在
和
,
上单调递增,在
,
上单调递减.
(2)由(1)得
,
若函数
在区间
,
递增,则有
在
,
上恒成立,
即
在
,
上恒成立成立,所以只需
,
因为函数
在
时取得最小值9,所以
,
所以a的取值范围为
.
(3)当
时,不等式显然成立,
当
时,因为
,
,所以要原不等式成立,
只需
成立即可,
令
,则
,
由(2)可知函数
在
,
递增,所以
,
所以
成立,
所以(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
练习册系列答案
相关题目