题目内容
9.为加公民的节水意识,某城市制定了以下用水收费标准,每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费,超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水治理费,设每户每月用水量为x(立方米),应交水费为y(元),求解下列问题:(1)求y与x的函数关系式;
(2)若某用户用水12立方米,则需交水费多少元;
(3)若一用户上月所交水费为24元,则该用户上月用水多少立方米?(精确到一位小数).
分析 (1)讨论当每户每月用水未超过7立方米时,当每户每月用水超过7立方米时,由一次函数写出解析式;
(2)令x=12,代入计算即可得到所求值;
(3)令y=24,运用第二段解析式,解方程即可求得x.
解答 解:(1)当每户每月用水未超过7立方米时,y=x(1+0.2)=1.2x;
当每户每月用水超过7立方米时,y=1.2×7+(x-7)(1.5+0.4)=1.9x-4.9.
则有y=$\left\{\begin{array}{l}{1.2x,0≤x≤7}\\{1.9x-4.9,x>7}\end{array}\right.$;
(2)当x=12时,y=1.9×12-4.9=17.9.
则某用户用水12立方米,则需交水费17.9元;
(3)令y=24,由0≤x≤7时,ymax=8.4,
即有1.9x-4.9=24,
解得x≈15.2.
则该用户上月用水约15.2立方米.
点评 本题考查分段函数的运用,同时考查分段函数的函数值和自变量的求法,正确求出分段函数式是解题的关键.
练习册系列答案
相关题目
14.
已知抛物线y=$\frac{1}{4}{x}^{2}$和y=-$\frac{1}{16}$x2+5所围成的封闭曲线如图所示,给定点 A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A 对称,则实数a的取值范围是( )
| A. | (1,3) | B. | (2,4) | C. | ($\frac{3}{2}$,3) | D. | ($\frac{5}{2}$,4) |
1.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行观测研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
(Ⅰ)请根据4月7日、4月15日、4月21日三天的数据,求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,若选取的是4月1日与4月30日的两组数据作为检验数据,试问(I)中所得的线性回归方程是否可靠?
(Ⅲ)以这5天的观测数据来估计总体,在4月份任取3天,求恰有2天每100颗种子浸泡后的发芽数在[25,30]内的概率.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$;
参考数据:11×25+13×30+12×26=977,112+132+122=434.
| 日 期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
| 温差x/°C | 10 | 11 | 13 | 12 | 8 |
| 发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,若选取的是4月1日与4月30日的两组数据作为检验数据,试问(I)中所得的线性回归方程是否可靠?
(Ⅲ)以这5天的观测数据来估计总体,在4月份任取3天,求恰有2天每100颗种子浸泡后的发芽数在[25,30]内的概率.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$;
参考数据:11×25+13×30+12×26=977,112+132+122=434.
18.如果数列{an}中,相邻两项an和an+1是二次方程xn2+2nxn+cn=0(n=1,2,3…)的两个根,当a1=2时,则c100的值为( )
| A. | -9984 | B. | 9984 | C. | 9996 | D. | -9996 |
19.已知4a=$\sqrt{2}$,lgx=a,则x=( )
| A. | 10 | B. | 100 | C. | $\sqrt{10}$ | D. | 10${\;}^{\frac{1}{4}}$ |