题目内容
(2012•许昌三模)设an(n∈N*,n≥2)是(4-2x)n的展开式中x2项的系数,则
+
+…+
的值为( )
| 4 |
| a2 |
| 42 |
| a3 |
| 415 |
| a16 |
分析:由an
•4n-1=
,知
+
+…+
=2(
+
+…+
),再由裂项求和法能求出
+
+…+
的值.
| =C | 2 n |
| 4n•n(n-1) |
| 8 |
| 4 |
| a2 |
| 42 |
| a3 |
| 415 |
| a16 |
| 1 |
| 2×1 |
| 1 |
| 3×2 |
| 1 |
| 16×15 |
| 4 |
| a2 |
| 42 |
| a3 |
| 415 |
| a16 |
解答:解:∵an(n∈N*,n≥2)是(4-2x)n的展开式中x2项的系数,
∴an
•4n-1=
,
∴
+
+…+
=4×
+42×
+…+415×
=2(
+
+…+
)
=2(1-
+
-
+…+
-
)
=2×(1-
)
=
,
故选A.
∴an
| =C | 2 n |
| 4n•n(n-1) |
| 8 |
∴
| 4 |
| a2 |
| 42 |
| a3 |
| 415 |
| a16 |
| 8 |
| 16×2 |
| 8 |
| 43×6 |
| 8 |
| 416×16×15 |
=2(
| 1 |
| 2×1 |
| 1 |
| 3×2 |
| 1 |
| 16×15 |
=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 15 |
| 1 |
| 16 |
=2×(1-
| 1 |
| 16 |
=
| 15 |
| 8 |
故选A.
点评:本题考查数列求和,解题时要认真审题,仔细解答,注意二项式定理和裂项求和法的合理运用.
练习册系列答案
相关题目