题目内容
椭圆的离心率为,若直线与椭圆的一个交点的横坐标为b,则k的值为( )。
A. B. C. D.
B
由得,设交点的纵坐标为,则,
代入椭圆方程得, ,选B.
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂
直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,
求出的斜率范围,若不存在,说明理由。
(本题满分12分)已知椭圆的离心率为,
直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直
线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积
的最小值.