题目内容
(1)若对于任意的n∈N*,总有| n+2 |
| n(n+1) |
| A |
| n |
| B |
| n+1 |
(2)在数列{an}中,a1=
| 1 |
| 2 |
| n+2 |
| n(n+1) |
(3)在(2)题的条件下,设bn=
| n+1 |
| 2(n+1)an+2 |
| lim |
| n→+∞ |
| 4 |
| 61 |
| 1 |
| 13 |
分析:(1)由题设得(A+B)n+A=n+2恒成立,所以
?A=2,B=-1.
(2)由an=2an-1+
(n≥2)和
=
-
知,an+
=2an-1+
=2(an-1+
),且a1+
=1,由此能推导出an=2n-1-
.
(3)假设存在正整数m,r满足题设,由an=2n-1-
,bn=
=
,又cn=bkn得
=
=(
)kn+1-kn=
,c1=bk1=
.于是S=
(c1+c2++cn)=
=
,由此能推导出存在正整数m,r满足题设,m=4,r=3或m=4,r=4.
|
(2)由an=2an-1+
| n+2 |
| n(n+1) |
| n+2 |
| n(n+1) |
| 2 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 2 |
| n |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n+1 |
(3)假设存在正整数m,r满足题设,由an=2n-1-
| 1 |
| n+1 |
| n+1 |
| 2(n+1)an+2 |
| 1 |
| 2n |
| cn+1 |
| cn |
| bkn+1 |
| bkn |
| 1 |
| 2 |
| 1 |
| 2r |
| 1 |
| 2m |
| lim |
| n→+∞ |
| ||
1-
|
| 1 |
| 2m-2m-r |
解答:解:(1)由题设得A(n+1)+Bn=n+2即(A+B)n+A=n+2恒成立,
所以
?A=2,B=-1.(4分)
(2)由题设an=2an-1+
(n≥2)又
=
-
得,an+
=2an-1+
=2(an-1+
),且a1+
=1,
即{an+
}是首项为1,公比为2的等比数列,(8分)
所以an+
=2n-1.即an=2n-1-
为所求.(9分)
(3)假设存在正整数m,r满足题设,由(2)知an=2n-1-
显然bn=
=
,
又cn=bkn得
=
=(
)kn+1-kn=
,
c1=bk1=
即{cn}是以
为首项,
为公比的等比数列.(11分)
于是S=
(c1+c2++cn)=
=
,(12分)
由
<S<
得13<2m-2m-r<
,m,r∈N*,
所以2m-2m-r=14或15,(14分)
当2m-2m-r=14时,m=4,r=3;
当2m-2m-r=15时,m=4,r=4;
综上,存在正整数m,r满足题设,m=4,r=3或m=4,r=4.(16分)
所以
|
(2)由题设an=2an-1+
| n+2 |
| n(n+1) |
| n+2 |
| n(n+1) |
| 2 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 2 |
| n |
| 1 |
| n |
| 1 |
| 2 |
即{an+
| 1 |
| n+1 |
所以an+
| 1 |
| n+1 |
| 1 |
| n+1 |
(3)假设存在正整数m,r满足题设,由(2)知an=2n-1-
| 1 |
| n+1 |
显然bn=
| n+1 |
| 2(n+1)an+2 |
| 1 |
| 2n |
又cn=bkn得
| cn+1 |
| cn |
| bkn+1 |
| bkn |
| 1 |
| 2 |
| 1 |
| 2r |
c1=bk1=
| 1 |
| 2m |
| 1 |
| 2m |
| 1 |
| 2r |
于是S=
| lim |
| n→+∞ |
| ||
1-
|
| 1 |
| 2m-2m-r |
由
| 4 |
| 61 |
| 1 |
| 13 |
| 61 |
| 4 |
所以2m-2m-r=14或15,(14分)
当2m-2m-r=14时,m=4,r=3;
当2m-2m-r=15时,m=4,r=4;
综上,存在正整数m,r满足题设,m=4,r=3或m=4,r=4.(16分)
点评:本题考查数列中参数的求法、等差数列的通项公式和以极限为载体考查数列性质的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目