题目内容
(1)若对于任意的n∈N*,总有(2)在数列{an}中,
(3)在(2)题的条件下,设
【答案】分析:(1)由题设得(A+B)n+A=n+2恒成立,所以
A=2,B=-1.
(2)由
(n≥2)和
知,
,且
,由此能推导出
.
(3)假设存在正整数m,r满足题设,由
,
,又
得
,
.于是
=
,由此能推导出存在正整数m,r满足题设,m=4,r=3或m=4,r=4.
解答:解:(1)由题设得A(n+1)+Bn=n+2即(A+B)n+A=n+2恒成立,
所以
A=2,B=-1.(4分)
(2)由题设
(n≥2)又
得,
,且
,
即
是首项为1,公比为2的等比数列,(8分)
所以
.即
为所求.(9分)
(3)假设存在正整数m,r满足题设,由(2)知
显然
,
又
得
,
即{cn}是以
为首项,
为公比的等比数列.(11分)
于是
=
,(12分)
由
得
,m,r∈N*,
所以2m-2m-r=14或15,(14分)
当2m-2m-r=14时,m=4,r=3;
当2m-2m-r=15时,m=4,r=4;
综上,存在正整数m,r满足题设,m=4,r=3或m=4,r=4.(16分)
点评:本题考查数列中参数的求法、等差数列的通项公式和以极限为载体考查数列性质的综合运用,解题时要认真审题,仔细解答.
(2)由
(3)假设存在正整数m,r满足题设,由
解答:解:(1)由题设得A(n+1)+Bn=n+2即(A+B)n+A=n+2恒成立,
所以
(2)由题设
即
所以
(3)假设存在正整数m,r满足题设,由(2)知
显然
又
于是
由
所以2m-2m-r=14或15,(14分)
当2m-2m-r=14时,m=4,r=3;
当2m-2m-r=15时,m=4,r=4;
综上,存在正整数m,r满足题设,m=4,r=3或m=4,r=4.(16分)
点评:本题考查数列中参数的求法、等差数列的通项公式和以极限为载体考查数列性质的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目