ÌâÄ¿ÄÚÈÝ
15£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÏòÁ¿$\overrightarrow{a}$=£¨Sn£¬1£©£¬$\overrightarrow{b}$=£¨2n-1£¬$\frac{1}{2}$£©£¬Âú×ãÌõ¼þ$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£¬
£¨2£©É躯Êýf£¨x£©=£¨$\frac{1}{2}$£©x£¬ÊýÁÐ{bn}Âú×ãÌõ¼þb1=1£¬f£¨bn+1£©=$\frac{1}{{f£¨-{b_n}-1£©}}$£®
¢ÙÇóÊýÁÐ{bn}µÄͨÏʽ£¬
¢ÚÉècn=$\frac{{b}_{n}}{{a}_{n}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®
·ÖÎö £¨1£©ÔËÓÃÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬¿ÉµÃSn=2n+1-2£¬ÔÙÓɵ±n£¾1ʱ£¬an=Sn-Sn-1£¬n=1ʱ£¬a1=S1£¬¼´¿ÉµÃµ½ËùÇóͨÏʽ£»
£¨2£©¢ÙÔËÓÃÖ¸ÊýµÄÔËËãÐÔÖʺ͵ȲîÊýÁе͍Ò壬¼´¿ÉµÃµ½ËùÇóͨÏʽ£»
¢ÚÇóµÃCn=$\frac{{b}_{n}}{{a}_{n}}$=$\frac{n}{{2}^{n}}$£¬ÔËÓÃÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬½áºÏµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇóºÍ£®
½â´ð ½â£º£¨1£©ÓÉÏòÁ¿$\overrightarrow{a}$=£¨Sn£¬1£©£¬$\overrightarrow{b}$=£¨2n-1£¬$\frac{1}{2}$£©£¬$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬
¿ÉµÃ$\frac{1}{2}$Sn=2n-1£¬¼´Sn=2n+1-2£¬
µ±n£¾1ʱ£¬an=Sn-Sn-1=£¨2n+1-2£©-£¨2n-2£©=2n£¬
µ±n=1ʱ£¬a1=S1=2£¬Âú×ãÉÏʽ£®
ÔòÓÐÊýÁÐ{an}µÄͨÏʽΪan=2n£¬n¡ÊN*£»
£¨2£©¢Ùf£¨x£©=£¨$\frac{1}{2}$£©x£¬b1=1£¬f£¨bn+1£©=$\frac{1}{{f£¨-{b_n}-1£©}}$£®
¿ÉµÃ£¨$\frac{1}{2}$£©${\;}^{{b}_{n+1}}$=$\frac{1}{£¨\frac{1}{2}£©^{-1-{b}_{n}}}$=£¨$\frac{1}{2}$£©${\;}^{1+{b}_{n}}$£¬
¼´ÓÐbn+1=bn+1£¬¿ÉµÃ{bn}ΪÊ×ÏîºÍ¹«²î¾ùΪ1µÄµÈ²îÊýÁУ¬
¼´ÓÐbn=n£»
¢ÚCn=$\frac{{b}_{n}}{{a}_{n}}$=$\frac{n}{{2}^{n}}$£¬Ç°nÏîºÍTn=1•$\frac{1}{2}$+2•£¨$\frac{1}{2}$£©2+¡+£¨n-1£©•£¨$\frac{1}{2}$£©n-1+n•£¨$\frac{1}{2}$£©n£¬
$\frac{1}{2}$Tn=1•£¨$\frac{1}{2}$£©2+2•£¨$\frac{1}{2}$£©3+¡+£¨n-1£©•£¨$\frac{1}{2}$£©n+n•£¨$\frac{1}{2}$£©n+1£¬
Ïà¼õ¿ÉµÃ£¬$\frac{1}{2}$Tn=$\frac{1}{2}$+£¨$\frac{1}{2}$£©2+¡+£¨$\frac{1}{2}$£©n-1+£¨$\frac{1}{2}$£©n-n•£¨$\frac{1}{2}$£©n+1
=$\frac{\frac{1}{2}£¨1-\frac{1}{{2}^{n}}£©}{1-\frac{1}{2}}$-n•£¨$\frac{1}{2}$£©n+1£¬
»¯¼ò¿ÉµÃ£¬Ç°nÏîºÍTn=2-$\frac{n+2}{{2}^{n}}$£®
µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁеÄͨÏîµÄÇ󷨣¬×¢ÒâÔËÓÃÊýÁеÄͨÏîÓëÇóºÍµÄ¹ØÏµ£¬¿¼²éÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬Í¬Ê±¿¼²éÏòÁ¿¹²ÏßµÄ×ø±ê±íʾºÍµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½µÄÔËÓã¬ÊôÓÚÖеµÌ⣮
| A£® | -24 | B£® | 24 | C£® | -24$\sqrt{3}$ | D£® | 24$\sqrt{3}$ |