题目内容

如图,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥A1B,D为AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求证:平面AB1C1⊥平面ABB1A1

【答案】分析:(Ⅰ)设AB1∩A1B=O,连接OD,利用直线OD与直线B1C平行,来推导出B1C∥平面A1BD.
(Ⅱ)由AB=BB1得ABB1A1正方形⇒A1B⊥AB1,再由A1B⊥AC1⇒A1B⊥平面AB1C1⇒平面AB1C1⊥平面ABB1A1
解答:解:(Ⅰ)设AB1∩A1B=O,连接OD.
由于点O是AB1的中点,又D为AC的中点,所以OD∥B1C(5分)
而B1C?平面A1BD,OD?平面A1BD,所以B1C∥平面A1BD(7分)
(Ⅱ)因为AB=BB1,所以是ABB1A1正方形,则A1B⊥AB1
又A1B⊥AC1,且AC1,AB1?平面AB1C1,AC1∩AB1=A,所以A1B⊥平面AB1C1(12分)
而A1B?平面ABB1A1,所以平面AB1C1⊥平面ABB1A1(14分)
点评:本题考查平面和平面垂直的判定和性质以及线面平行的判定.在证明线面平行时,其常用方法时转化为线线平行或面面平行.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网