题目内容
已知f(x)=
(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
(1)证明见解析(2)0<a≤1
解析:
(1)证明 任设x1<x2<-2,则f(x1)-f(x2)=![]()
∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)内单调递增.
(2)解 任设1<x1<x2,则f(x1)-f(x2)=![]()
∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,
∴a≤1.综上所述知0<a≤1.
练习册系列答案
相关题目
已知f(x)=sin(x+
),g(x)=cos(x-
),则下列结论中正确的是( )
| π |
| 2 |
| π |
| 2 |
| A、函数y=f(x)•g(x)的最大值为1 | ||||
B、函数y=f(x)•g(x)的对称中心是(
| ||||
C、当x∈[-
| ||||
D、将f(x)的图象向右平移
|